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Real bodles can possess an initial nonhomogeneity due to an inclusion of a
foreign material or lmperfections, or as a result of being a composite mate-~
rial. The nonhamogeneity can dbe also generated by certain external filelds
and above all by a thermal field. It is known that operators in the consti-
tutive equations describing viscoelastic materials contain parameters extre-
mely sensitive to the change in temperature. 1In the case of the nonhomoge-
neous thermal field these parameters depend upon the space coordinate. The
effect of induced nonhomogeneity on the stress distribution, caused by
external forces, is much more pronounced and of longer duration than the
effect of thermal stresses themselves [1]. Thus, the neglect of the former
effect leads, in even simple situations, to physically inadmissible solu-
tions.

Several papers have been devoted to the investigation of nonhomogeneous
elastic bodies. For example in [2 to 4] an approximate hypothesis is assumed
that one elastic modulus is varying while the Poisson ratio 1s kept constant.
In other papers [5] the bodies are considered as being composed of layers of
homogeneous elastic regions.

Misicu [6] and Misicu and Teodosiu [7] derived formulas for the complex
mapping of stresses and displacement, valid for elastic and viscoelastic
solidse, with continuous nonhomogeneity of a general type in the case of plane
and axisymmetric problems. In the present paper the method of solution of
the elastic static plane problem for nonhomogeneous bodies is presented.

This method is based on the mapping of the Kolosov [8 and 9] and Muskheli-
shvili [10] type; and conformal mapping (*). It is shown that to get a solu-
tion for the region with nonhomogeneity of a general type 1t is necessary to
know the solution of the same problem for homogeneous medium,

#) It will be shown in the following (Section 1) that a quasi-static problem
for viscoelastic bodies in the presence of a stationary thermal field can be
formally reduced by means of the Laplace transformation to the static elastic
problem for the nonhomogeneous body, and the latter problem may be treated
using the method developed in the present paper.
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460 M. Mishiku and K. Teodosiu

1, Basioc equations and formulations of boundary value problems. Let us
consider equations of quasi-static equilibrium, geometrical relations and
constitutive equations for nonhomogeneous viscoelastic medium extending over
the domain R

St Xi=0, e =aly ;4 u;,), s ==e;#dG1, O = (g — 3aT) +d %2 (1.1)

Si; =035 == o5k O;jy €5 =855 — YaeyyBy; (1.2)

vhere o,, denotes the stress tensor, ¢,, 1s the straln tensor, u, denotes
component‘,a of elastic displacement, X, denotes the body forc¢es. The tempe-
rature T = T(x,) is stationary at the point (x,) = (x,,¥;,¥,) and 1s meas-
ured relatively to the natural state of the body. The coefficient a= a(x,)
is a material constant, G, = G (%5 1), and G, = Gy (z;, t) are functions descri-
bing the viscoelastic properties of the medium. By * 1s denoted the con-
vo%ntion multiplication of the Stieltjes type of the corresponding functions
*

.

Let us assume that Gi, Gy, 05 X, &5 (f) belong to the class #* and are of
the order O{exp(pot)) when t - = for (z,)=H, where p, 1s an arbitrary
real constant. Equations (1.1) after the Laplace transformation take the
form

- hd oo
Gii - X * =0, &.*=Yglu; .4 u;,) (1.3)
13,7 i . ’ :J . ‘hJ. Jv1’ . U* (’i' P) — S e—pff (Ii’t) dt, RGP>P0)
8% = pGr¥e,  Opg == pGy* (g)) — 3aT'*) d . .
On introducing the notation O = O 0127 Tyyr v - 3 B ™ By E12 ™ By v v

u, = u, 4y = v, Equations (1.2) and (1.3) 1in this case of a plane problem
yield

.

a3, ot o, 05,0
du* ov* . 1 (Ou* = dv*
W= u=ape e v (5t ) (1:5)

o= M (e, +e,) -+ 2ute, —K*T%, o =A% (e, e *) + 2ure, —k*T* (1.6)

.‘x;: 2}".‘"::;’ -;y;:'rz;:() (1.7)

where for the plane strain
A* =1/3p (Gs* — G1¥), 2p* =pGy*, k* = paGy* (1.8)

. Go* — (1h* 3G *Go*paT*
G, = G + Gi* (Ox* + 53,‘) TGS F G Ez* =0 (1.9)
and for the plane stress
G]‘ (Gg"K —_ Gl*) P 3G1'Gg*pl
M=——r T pr=p0% P =5paTe (1.10)
G1* — Go* 3G*

et = TG LGt (e.*+ Bu") + :'):'G‘;;'W aT*, c*=0 (1.11)

Equations (1.4) to (1.7) are the same as those describing the plane prob-
lem for nonhomogeneous elastic solids [7]. In the following for the sake of
simplicity, the asterisks are dropped.

We assume further that e,, €,, ¢,, and consequently o,, o, and 171,, are
uniform and continuous functlons toge{:her wlth thelr first and second deri-
vatives in the domain D occupled by the elastic body. Similarly X =x(x,y)

#) The constitutive eqguations considered in thls paper are of the relaxation
type. Integral constitutive equations of the creeping type or differential
relations, can be treated in a similar way. The notation used throughout
this S8ection can be found in [11].
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and Y = Y(x,y) are analytical functions of x and y 4in the sim?ly con-
nected domain D, which fully contains the domein D ., Equations (1.4) can
be also written in the form

[ " 4 . .
r (6y— 6, +72iT,) — 5 (5. + 6,) =X —iY (1.12)
s=ebw 0 (0 0) 9 L(d D))
(E=:c—-iy, 2z 2\ 'yl g 2 6x+‘8y
Equation (1.12) 1s satisfled identically if we assume
02F . 0tF -
Gx—}—dyzlgg;a—;, Gu-—dx—*—Zl‘t‘xy:/i—a?'—M(z,z) (1.13)

where F(#,z) is an analytic real-valued function of # and ¥ 1n the
domain (D, D) such that its first four partial derivatives are continuous (*),

and the function -
2

—M(z,E):S[X(z_'l"_"_,z-z)——iY ”-“,“,‘)sz (1.14).
p 2 2 \ ™2 %
is analytical in the domain (2,, D, ).

Relations between the components of stress tensor ¢,, ¢,, T,, and dis-
placements u and v , derived form (1.5) and (1.6) have the form

U 1 ] { &F M (Z:u-{—iv)
E‘=_4—}f(°ﬂ_°’°+2”"")=ﬂr_5z_’+@_ U=u—iv] (1.15)
aU  aUu ®*—1 % — 19*F k(x—1) A+3p
By elimination of U from (1.15) we can obtain a compatibility equation.
We obtain the condition (L17)
Ao My E(Ler :‘Z) o_[x=tOF  keot))
2\ 02 A T 0P\ p g2 Apn/ T 3g95 L B 9a0% 2 i
which can be also written in the form
asF BRF - 3F iF - @F aF -
— A = —_—_ —_— — = .
o T M gap t A Gag T A G A Gat A e =50 (118)
where _
- [ M M P kx—1)
f("z)—x+1{a;24p + 5 4p."azaz( pm T)}
9 xt1 n_ 1 P a?
4, = %z In TR Ay = % + 132 -E", As =”_'*'_162 5 (1.19)

_ We assume that 4,(z, z) and (&, ¥) are analytical functions of 2z and
# 1in the domain (D, D). It can be proved that an arbitrary solution of
Equation (1.18) which has continuous partial derivatives up to the fourth
order, should be an analytic function of z and ¥ 1in this domain. Hence,
the hypothesls concerning the continuilty »f stress components and their first
and second derivatives in 0 1includes in fact thelr analyticity in D . This
statement generallzes the result of Muskhelishvili, ([10], Section 32), con-
cerning homogeneous bodies.

It follows from (1.13) that the state of stress depends not directly upon
F but through its second partial derivative. Denoting for example

#) By Db and 15, are denoted domains symmetric, respectively, to the
domains J and D, relatively to the real axis. It is assumed that the
origin belongs to the domain 2D .
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dF (z, 2 -
2——(2:-’-2—) =G (z,2) (1.20)
dz
Equation (1.18) can be expressed as
3G 2G oG G -
o5 T Re (2A1 Goas T2+ 4 7[) =2f(z, 7) (1.21)
or in an equivalent form
+#G 8 (B1G) | 8(B:G) |, 9(ByG) ] - o
— = — BsGi=2 z 1.22
azzaz+Re[azaz T Ty TEG =) (£.22)
nnere 24 a4 P o \od
. 1 e _ 1,922 073
B; =2A1, Bg - AB._' ‘—a‘;", Ba =2 (Az —_ 9z ) N B4 =2 azaz 2 a; 9z
In the notation of Equation (1.20) the relations (1.13) take the form
oG G -
Syt oy =273, Sy = Gy + 21T, =2 E—M(:,z) (1.24)
Equation (1.22) can be rewritten thus _
aa _ _ 2 4 z
e 16 (5 D+ 16 (5 5 —Fo(z, 9] =0, Folz, =2 S dz S dz S f(2,3)dz
0_ 0 o0
z z z (1.25)

B dz ] dz

Ce |
Cemanl

IG (s, ) = S Re[BlG+ BzGd2+SBaG dz 4 Sdz
0 0

0
Prom (1.25) we obtain
G(z,2) +1G(2,2) — Fo (5, ) =@ (2) + 29, (3) + ¥ (3) (1.26)

where o(z), @,(2) and y(z) are arbitrary functions, holomorphic in 2 .

Equations (1.19), (1.20) and (1.26) imply that the derivative of function
G (2, 2) + IG (2, 2) — Fq(z,3) with respect to z should be a real-valued
function. By imposing a condition that also x-derivativelof the function
@ (2),+ 29, (s) + P (z) be real function, we obtain o, (z) = ¢’(2) and conse-
quently (1.26) becomes

G (3 2) + IG (2, 2) = @ (z) + 29" (2) 4 (2) -+ Fy (2, 2) (1.27

Let ¢ Dbe the boundary of the domain D described by Equation ¢ = t{s)
where ¢(8) is an affix of the point (¢ corresponding to the curvilinear
abscissa & measured from an arbitrary chosen point on ¢ . Evidently, it

1s assumed that t (s I) =t (s) and t(8) = (sy), 1f 0< 5 < 5 < I, where !
1s the length of (=-curve. ’

In the case of the first fundamental boundary value problem the prescribed
components of external stress 0,, = 0O,.(s) and Ony = Oy, (s), applied on the
contour C are related to the values on the boundary by well known Formulas

Opy = O €08 (n, z) + T, €08 (n, p), Opy = Ty, €08 (n, 2) + 0, cos (n, y) (1.28)
where n denotes the outward normal to the contour (¢ .
Relation (1.28) can be rewritten in the form (*)
O + 10, = (0, + i¥.)) ¥ (8) — (Vyy +i6)) &/ (), t(s) == (5) 4 iy () (1.29)
From (1.2!4) we obtain
G oG

. . e . G oG — .
T=u+‘°u='('{i?+'a'f)““M(z’z)' °x+“xy=‘5*“5;‘+M(z.z)

'z Denote by fs(s) or fét,?) the limiting values of certain func}ton
J(2,2) continuous in (D, D) for ;=D, ;. C, z€ D, z-— C, and by fle) the
derivative of f(s) with respect to & .
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By substitution 7,,+ to, in (1.29) and noting that

G G . dG _
RO T VO =3 @)=z +iy @)

we get de I
Opx Tt iy =— iz +iM (s5)¥' (8)

After integration with respect to & , the latter equation becomes
s 8
G(s)=i S (e + i0py) 2 + S M@ F(@)ds+c=H(s) (c=-const) (1.30)
0 0
It follows from the relation (1.1?) that if the components of stresses
are prescribed, then the function 0{s#,¥) 1s determined to within a constant.

Consequently, by choosing o = O in Equation (1.30) the function ¢(z,z)
becomes fully determined by the state of stress.

Thus, the solution of the first boundary value problem 1is reduced to the
determination of the solution ¢(z,¥) satisfying Equations (1.21) or (1.27)
together with boundary condition (1.30). After having solved this problem,
the stress components can be found using (1.2%).

To solve the second boundary value problem we use the formulation in dis-
placements. On account of Formulas (1.15) equation of equilibrium (1.12)

can be written in terms of diaplacement in the form (1 31)
Ky RO A) IR YOS AR I A= L% an L
= [x_i (5 + a:) +rlh J=P%, PEi= = (T) = 7 (X+iY)

This equation can be written in the form

B [ % al) 1 a(ul) 1 & 1 o
a;{x—i 72 Tx—1 5, ~w—To U= =157

St NI

[ 3 (;ﬂ U)+P(z,'z)]d2}=g

2 \ gz
it follows from the above
%  ApU) 1 a(ul) 1 o 1 o

x—1 0z ®—1 gz  %—1 2z U— n--i;ft_f—
z o [dp
~ [E (E U)+ P, z)]dz — ¢’ (2) (1.32)

0
where o(2) 1s an arbitrary functlon holomorphic in D . By eliminating
P (%,U) / gz from Equation (1.32) and from 1ts complex conjugate equation we
obtain

z

(+ DRU (2, )+ TV (2. D =np(2) — 7 B — 5D — { X @@ 02+ P, D)

P(s,5)di— \ P 2) d,] dz (1.33)

SN |
SN

Py (3, 2) = § [n
0

.IU(z,E)=—§[((;—a': +p g—:) U+ %Tr+u§£—(—?‘;— U)di—
o

P
(o (my

§.£(§U)dt]dz (1.34)
where (#) 1s again an arbitrary function, holomorphic in D .
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The solution of the second boundary value problem is finally reduced to
the solution of Equation (1.31) or equivalent to it (1.33) satisfying condi-
tion U/ (s) = u (s} -+ iv (s), where ule) and »(2) are components of elastic
displacement, given on (¢ .

2, Appliocation of oonformal mapping. Let us assume that the simply con-
nected domain D, with boundary € 1in the plane g = x + iy 1is transformed
by means of conformal mapping £ = w{{) intc the cirele 45 with boundary T,
described by an Equation fﬂ = 1, in the plane { = £ + tn where w(0) = O,

S8ince w(¢) 1s holomorphic in 4 , then

a 1 4 4 ! 9 CAEN dY . AV ia 9 4y
"5;:’&')?“@’5‘59 —5?:;'—(53:_' E2= {§} 4y SI=W (;)a, {e.3)
Consequently (1.27) and (1.25) become
CEO+ICCh=0@ + ﬁf(% ¥O+PE+ Fo D) (22)
% [ %
regbh={owre e+ (TOmed+ (g gt
0 0 0
4 ¢ B
+\o o a (o see a|a 2.3)
0 ]
) 4 4 [ .
e h=2{voalvoa (0 sTIE (24)
0 o ]

where o{(¢) and 4({) are arbitrary functions holomorphic in A and

CGLOY=6Clmao®, B LD=Blo® o0 (i=1234 (@5
The boundary condition (1.30) after mapping is
G (o) = H° (q) (2.6)
where g = em denote the curvilinear abscissa on the cirecle T and the
function #°(¢) 1s uniguely defined in K#(s) since there is one to one cor-

reapondence ¢ = w('r) between afflices ¢ on the contour ¢ and 71 on the
contour T .

Substitution of (2.1) into (1.33) and (1.3%) results in
o ()

4+ 1HpU°E, D +TU (G D) =up ({) = =0 ° 0 =9 —
14
~{o @ Fewatreed @)
3]
14 ¥
I 23 MmN o' (8) ap a o\ o=
U (§,§)=—~S[<3g +}L—ag)U + m,(g)gg‘tf +nS§;‘(g*g“U >d§-
] 4]
4
— (OI(C) i @_'{70 dc dg U'(C,Z)EU{@(C),&T@)] 2.8
o (©) ,S,ai (aé ) } P (L, T) = Polo (D), o (8] @9

The image of the boundary condition (1.35) 1is
U® (o) = u° (6) + iv° (0)
where u°(o) and v°(¢) are uniquely determined by wu({s) ana v(s).
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3. Method of sucoessive approximations. The boundary value problems for
nonhomogeneous bodles will be solved by means of the method of successive
approximations. Assuming that the first approximation corresponds to the
homogeneous body subjected to the same condition of loading, the subsequent
iterations introduce corrections due to the nonhomogeneity. The solution of
the first boundary value problem can be found from Equations (2.2) and (2.6)

as follows: _ 0 B
& D=2 6 ¢ D (34)
n=1
GG D= nQ+ e VOO R G D (3.2
G G0 =9 (0)+ u‘f—‘(% e © +¥0— 6,40 (n>2) (3:3)

where functions o,(¢) and y,({) (n = 1) are holomorphic in 4 and should
be determined from boundary conditions

W)+ S G B = B ) — Fe () 3.4
D)+ 2L G + 5@ = TG (5D (0>2) 35)

As 18 shown in Secticn 1, the elimination of an additive constant in the
boundary conditions (1.30),in accordance with (2.6), permits to express
¢°(¢, ¢) in terms of stress., However, since functions o({) and y{¢) are
not fully determined from (2.2) we can impose an additional condition ({10],

Section 34%)
P(0) =0, Img'(0)=0
This implies that in the considered scheme of solution we can assume
P 0)=0, Img¢,/(0)=0 (n2>1) (3.8)

A solution of the subsequent boundary value problems (3.%) and (3.5) can
be achieved by means of methods known in the theory of elasticity for homo-
geneous bodies, 1l.e. method of expandirg in power series, integral methods,
ete.

An example concerning a solution of the first boundary value problem for
a circle, based on the known Muskhelishvili's power series solution, will be
given in Section 4.

The convergence of seriles (3.1) depends upon the conditions imposed on
functions F°%T) » Fo®(e, 8) , w({) , and also upon the type of functions
describing the nonhomogeneous propertles of the body.

A solution of the second boundary value problem can be found from (2.7)
and (2.8), according to

U6, 5= > U’ (% ) 3.7)
n=}

o) —— 6

o o -\ C ’ b (7Y
Ok DRV @ D =m0~ T w0~ o O R+ et b
0

0 DU (6 D) =9, ) — 2L 5 — i — (3.8)
. ©
—S 0B A — TV CE (n>2) (3.9)
0

where the functions ,(¢) and y,({) (n =2 1), are holcmorphic in 4 , and
are determined from the boundary conditions
T

) = Loy ® . . T
" (3) — s B (t)—"llil(f)—gm(Q)E‘Pl(@)%:(”‘l‘i)l‘[“(“) Hio (1= Pits
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<
(D(T) —_— —— , 3x ° -
1Py (v) — o) P’ (¥)— %(r)—gw (C)E%(C)dc =JU, (v, 7v) (22>2) G.11)
0
It 18 seen from (2,7) that the functions o(C) and ¢(¢) are not uniquely
determined by U°(r, 7). However, in the considered scheme of solution we
can add the following condition

®, (0) =0 (n2>1) (3.12)
and then, both o, (¢) and ¢,(¢) become fully determined by means of U°(¢,()-

The boundary value problem (3.10) and {3.11) differs from the common elas-
tic problems for homogeneous bodies by the presence of an integral term,
Assuming a frequently used hypothesis ( ) that x = %y= const , relations
(3.8) to (3.11) become

(o + DRU €. D= ) — S W AT+ P @D (.13
ot DBU, € D= 50 @) = S T O —H O = S0,5 0D 632 (14
*gs () — “;’:‘% W) —wE =0+ DpaE+ @I —PET) (315

i ()= 7, ) — ¥, () =055 (5, ) (3.16)

and the solution of related boundary value problems (3.10) and (3.11) can be
reached by means of methods used in the theory of elasticity for homogeneous
bodies.

&, Numeriocsl example. We shall solve the first boundary value problem
for the domain D bounded by a circle |z = # and subjected on the circum-
ference to a uniform radial tensile load of intensity p (Fig.la). Apply-
ing a conformal mapping z = R{ , that domain P transforms into the domain
A )1n the complex plane ( representing a unit radius circle |¢] = 1 , (Pig.
1b).

Let z= re’®, [ = pe’® (p = r/R). Introducing the polar components of
stresses 0,, Oy and T, .-wWe obtain from (1.2;3 expressions determining
these components corresponding to various stages of the iteration process

;T
r,’é"’:%lm( - em)
_ (4.1)
1 1 9G,° oG,
n) _ 210
o= [ =g Re (g~ )]
i 6Cn° 3—61’10 ie\
Fig. 1 55" =F[ac +Re( rakd )]

If the components of stress applied to the contour are Onpg = p COS 6.
G,, = p 8in @, then taking into account that dg = Rdf, we obtain from (1.30)

2]
H°(8) = iR S (Opg + i0y,) d8 == ipR
[

¢%do = pRe®

Ce @

#) This hypothesis can be assumed as a first approximation for an arbitrary
nonhomogeneous body since x depends solely upon the Polsson coefficlent,
which varies for all known materials within sufficlently narrow ranges.
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Ko Consider the nonhomogenelity of the type

u=mexp[%(s+?)]» =%

220n 495
¢ - Hy
where o and xo &re dimensionless parameters,
whereas o 1s of the same dimension as u .
The lines u = conast are then parallel to the
Ao -axis, (Fig.2). Prom (1.19), (1.23) and
Flg. 2 2.3) we get

|4 4 |4
orp B o (xo~—-1)a2§ o iF 202 .
J°G° (L, ©) §Re[—2a6‘+ no 1 60d5+m§0d§]d§
Applying now the scheme of solution presented in Section 4 and also using
the Muskelishvili's solution of the first boundary valin problem ([10], Sec-
tion 54) we obtain expressions for the funoction G&'((,{) and corresponding
components of stress, The first three iterations of ¢,, 0, and 1, are

6,0 = 6,0 =p, 7,0 =0
P(tg—1)a? 9 _ Pto—1)a?
o, ® = 2 —p o = Smer U3 =0

—4f)asd
6,"’=p74(i(°,;¢)1;‘—a(1—p”) [2a (%0 — 1) (2 —p?) + 8 (%0 + 1) p cos 0 — & (1 + p?) cos 260]

l-—i 3
060 = B2 120 (g — 1) (2— 993+ 59 4- 8. (xa - 1) (3— %) pcos 0 4
4 a (1 — 1207 + 15p4) cos 20]
—1)a?
%, _—.%-H (1 — p?) [8 (%o + 1) p 5in 0 -+ a (1 — 5p?) sin 26]

Table 1 presents relative values of g, and Oy at ¢ = 0 for xg= 1,8
and a = 0,8 , corresponding to the first three stages of iteration, so that

in the Table 1

o, PR W4 Mg g® ( (So1 Goq: oy )
——F0——, G,g== ) analogically)

S = r "’ Opg = P

In this case ., changes from 0,200, to 4.95 u,, (Pig.2). PFor ¢ = O
the shear stress 1(,',‘,)= 0, n > 1, s8ince the nonhomogeneity and load are sym-

metrical with respect to g-axis.

Table 1.
0

Strese 0.0 0.2 0.4 0.6 | s | 1w

614 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
Opg 1.00143 1.08777 1.07680 1.05851 1.03291 1.00000
Sp3 1.09526 1.10063 1.09578 1.07863 1.04728 1.00000
Goy 1.00000 | 1.00000 1.00000 1.00000 1.cceco 1.00000
Gy 1.09143 1.08046 1.04754 0.99269 C.91589 0.81714
o3 1.09874 1.11280 1.C9068 1.02310 0.9€252 0.72282
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Results presented in Table 1 show that the presence of nonhomogeneity
alters the state of stress both quallitatively and quantitatively. In the
considered case the maximum value of radial and circumferentlal stresses O,
and 0, changes respectively by + 10% and — 28% . Also, there appears
the shear stress 71,4 » although the loading is axisymmetric.
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