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Real bodies can possess an initial nonhomogenelty due to an Inclusion of a 
foreign material or lmperfectlons, or as a result of being a composite mate- 
rial. The nonhomogenelty can be also generated by certain external flelda 
and above all by a thermal field. It Is known that operators In the constl- 
tutlve equations describing vlscoelastlc materials contain parameters extre- 
mely sensitive to the change In temperature. In the case of the nonhomoge- 
neous thermal field theee parameters depend upon the space coordinate. The 
effect of induced nonhomogeneity on the stre86 distribution, caused by 
external forces, 1s much more pronounced and of longer duratlon than the 
effect of thermal streesee themselves [l]. Thus, the neglect of the former 
effect leads, ln even slm$le altuatlone, to physically lnadmlaslble aolu- 
tlons. 

Several papers have been devoted to the lnvestlgation of nonhomogeneous 
elaatlc bodies. For example ln 12 to 43 an approximate hypothesis 1s assumed 
that one elastic modulus Is varying while the Poisson ratio Is kept constant. 
In other papers [5] the bodies are consldered as be'lng composed of layers of 
homogeneous elastic regions. 

Mlslcu [6] and Mlslcu and Teodoslu [7] derived formulas for the complex 
mapping of etresbea ar@ displacement, valfd for elaatlc and viscoelastlp 
eollde, with contlnuoua nonhomogenelty of a general type In the case of plane 
and axlsynnnetrlc problems. In the present paper the method of eolutlon of 
the elastic static plane problem for nonhomogeneous bodies la presented. 
This method Is based on the mapping of the Kolosov C8 and 91 qnd Muakhell- 
ahvlll [lo] type; and conformal mapping (*). It 18 shown that to get a aolu- 
tlon for the region with nonhomogenelty of a general type It la necessary to 
how the solution of the same problem for homogeneous medium. 

*) It will be shown ln the following (Section 1) that a quael-static problem 
for vlscoelaetic bodies ln the presence of a BtatlonaTg thermal field can be 
formally reduced by meana of the Laplace traneformatlon to the static elastic 
problem for the nonhomogeneous body, and the latter problem may be treated 
using the method developed In the present paper. 
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460 II. l!lshlku and K. Tcodmlu 

1. B&r10 l qu8tloar 8nd fomnal8tlo!u of bounduly V&lW problomr. Let us 
consider equations of quasi-static equlllbrlum, geometrical relations and 
constltutlve equations for nonhomogeneous vlscoelastlc medium extending over 
the domain I) 

c$j, j + ‘1-i = 0, ‘ij z1/2(ui,j+ uj,i)B 
%j 

= eij + dC1, CS,_~ = (ek, - 3uT) * d% (1.1) 

‘ij = % -J 1/$lkki3ij, eij = eij - 'iser~~ij 
(W 

where u , 
c 

denotes the stress tensor, cl, 1s the strain tensor, u, denotes 
componen a of elastic displacement, I, denotes the body forces. The tempe- 
rature T - T(x, ) ia stationary at the point (x, ) = (x, ,xa,xs ) and Is meaa- 
ured relatively twthe natural state of the body. 
is a material constant, G = G, (xi9 z, 

The coefficient a- a(x, ) 
3 and G, = G, (sit t) are functions deacrl- 

bing the vlecoelaatlc properties of the medium. By l Is denoted the con- 
voliatlon multlpllcatlon of the StieltJes type of the corresponding functions 
(+) l 

Let us aaaume that GI, %, (Jijr Xi, sij (f) belong to the class H’ 8nd are of 
the order O[exp(P, t)] when t - - for (s,)EK, where PO Is an arbitrary 
real constant. Equations (1.1) after the Laplace transformation take the 
form 

Qijyj + Xi* = 0, eij* =‘lac”i:j + ULi) 

4 .* = pG1*eii, 42 6; = pea* (“k;l_ 3uT’) 0 

On Introducing the notation 
ull=cr,, ulz=rXU ,... ;eI,=eX, e12=exv,.. .; 

Ul = u, u, = v, Equations (1.2) and (1.3) In this case of 8 plane problem 
yield 

as,* tiz; 

-z+ -T&j-+x*=0, 
ag* 
ay+y*=o (1.4) 

th* 
e *=z, x (1.5) 

cs,+ = A* (E,* + ey*) $2p*e,* - k*T*, Q~* = h* (eX* + eV*) + 2p,*ev*---k*T* (1.6) 

‘C* WJ = 2j.b*eXi, =I@ l =Tz:=O (1.7) 

where for the plane strain 

h* - ‘/sp (Gz* - G,*), 2p* ==pc&*, k* = pctG2* (W 
Ga+ - G1* 3G1*G2*pzT* 

a; = 2Gz* + Gr+ (‘r* + ‘g*) - 2Ga” + G1* 9 e,* = o (1.9) 

and for the plane stress 

&* zz Cl* (G* - cl*) P 
2p* = pc,*, 

3G1*Gr*px 
2G1*+ Gz’ ’ k* = mGGz+ (1.10) 

G$J’ - Gz* 
e *=ZG1*$-G’,* 

3G,* 
z (%* + eV*) + rG;$m+ G2* ___ UT*, 6 *=o L (1.11) 

Equation8 (1.4) to (1.7) are the same as those describing the plane prob- 
lem for nonhomogeneous elastic solids [7]. In the following for the sake of 
slmpllclty, the asterisks are dropped. 

We assume further that E,, 6,) C, and consequently uI , o, and T,, are 
uniform and continuous functions toge\her with their first and second derl- 
vatives in the domain D occupied by the elastic body. Similarly x-X(x,y) 

l ) The conetltutlve equations considered in this paper are of the relaxation 
type l 

Integral constitutlve equations of the creeping type or differential 
relationa, can be treated l,n a similar way. The notation used throughout 
this Section can be found In Ill]. 
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and Y - Y(r,y) are analytical functions of n and y In the slm Iy con- 
nected domain D, which fully contains the domain D . Equations P 1.4) can 
be also written in the form 

; (au - 6, +‘a$,) - -g (GX + QJ = x - iY 

( 
z =x + iy, a 13 a a 1 
Z= I- iy, 37” 2 -zFiaz/ ‘z-2 ax ( ) ( 

“+i$)) 

Equation (1.12) Is satisfied identically if we assume 

a2F a2F 
a,+oy==4-, 

aZaZ 
o 

V 
--ox $2ir,, =4w-M(~,i) 

(1.12) 

(1.13) 

where F(t,% 
j 
is an analytic real-valued function of # and 5 In the 

domain (D, b such that Its first four partial derivatives are continuous (*), 
and the function 

2 

-M (z, i) = (1.1-i). 

is analytical In the domain (D,, a,). 

Relations between the components of stress tensor urr a 
derived form (1.5) and (1.6) have thi km 

and dls- 
placements u and u , 

U=u+iv 
-=- --a,+2ir,v)=--1~+M 

CL as * ( TT= u- iv (1.15). 1 
- 

(a,+a,+2kT)= x+z+kq+ (x= S) (i.i6) 

By ellmlnatlon of U from (1.15) we can obtain a compatibility equation. 
We obtain the condition (1.17) 

which can be also written In the form 

where 

f(Z, z)= - *{-$$+&$pgq} 
a X+1 b a2 1 

.41=z'n P , Az=x+i&q-, 
P a2 

Al- --- 

x + 1 a2 ai 
(1.19) 

We assume that ,4,_(a, t) and f(8, i) are analytlcal functions of I and 
i in the domain (D, D ). It can be proved that an arbitrary solution of 
Equation (1.18) which has continuous partial derivatives up to the fourth 
order, should be an analytic function of I and I In this domain. Hence, 
the hypothesis concerning the continuity ?f stress components and their first 
and second derivatives In D Includes in fact their analytlclty In D . IhIs 
statement generalizes the result of MuskheIlshvlll, ([lo], Section 32), con- 
cerning homogeneous bodies. 

It follows from (1.13) that the state of stress depends not directly upon 
F but through its second partial derivative. Denoting for example 

*) By b and 6, are denoted domains symmetric, respectively, to the 
domains D and D, relatively to the real axis. It Is assumed that the 
origin belongs to the domain D . 
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2 aF (2, ? 
a2 5 G (z, i) (1.20) 

Equation (1.18) can be expressed as 

(1.21) 

or in an equivalent form 

$$ + Re [~+%$3-+9+~&]=2f(~,<) (1.22) 

where ($2;) 

111 = 2Al, 
aAr 

Bp, = A,- T;-, B.9~2 (AI-%), B4=2 *3-2$-& 

In the notation of Equation (1.20) the relations (1.13) take the form 

ac 
6z+Gy=2,,, 

aE 
a,-GG,+2ir,y=2 z - M P, 3 (1.24) 

Equation (1.22) can be rewritten thus 

& [G (z, T)+ IG(z, $--Fo(z,i)]=O, Fo(a, i)s 2 \ dz fdzi f(z,i)d; 

0 0 
From (1.25) we obtain 

0 0 

C (.z, 4 + IG (2, 4 --F,(z, 3=M4 + G-G+$W (1.26) 

where v(r), cpl(r) and V(z) are arbitrary functions, holomorphlc In D . 
Roz=tlons (1,19), (1.S) and (1.26) Imply that the derivative of function 

(?$&z)~: 1G (z, z) - Fe (z, z) with respect to z should be a real-valued 
By lm~oslng a condition that also r-derivative of the fun&Ion 

cp (4, + 2% (4 + Wj be real function, we obtain cpl (a) q (p’(z) and conse- 

quently (1.26) becomes 

C (I, 3 + IC (~3 = tp (4 + zm +9(2)-t- F, (z, 3. (1.27) 
Let C be the boundary of the domain D deacrlbed by Equation t - t(8) 

where t(8) Is an affix of the point C corresponding to the curvilinear 
abscissa 8 measured from an arbitrary chosen point on C . 
Is assumed that t (8 + r) 

Evidently, it 
= t (s) and t (q) # t (s,),, If 0 < sI < 8, < 1, where I 

Is the length of C-curve. 

In the case of the flrst fundamental boundarv value pr blem the prescribed 
components of external stress a, = Unx (8) and uny = bny 8. applied on the (3 
contour C are related to the values on the boundary by well known Formula8 

%x = u,cos(~, zj + r,, COS(S, p), unv = 'cm cos (n, z)+ U~COS(~, p) (1.28) 

where 6 denotes the outward normal to the contour C . 
Relation (1.28) can be rewritten in the form (*) 

0% + icny = (0% _t &,) Y’ (8) - (& f ia,,) X’ (I), t (8) = x (6) + iY (8) U-29) 

From (1.24) we obtain 

TXy + ibv = i 
8G 3G 

ax + ir, = z - aE + 37 (Z, 2) 

l 

t 

Denote by Y(8) or f t,z) the llmltlng ValIies of certain funct on 
I a,Z) continuous in (D, f ) for ZED, z+ 0, i~jj, Z4 E, and by 

derivative of /(8-) with respect to 8 . 
A 8) the 
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By substitution T,,+ tu, In (1.29) 

ac 8C I dG 
z t’ (4 + x t (8) = ds 
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and noting that 

P (4 = 2 (4 + iv (4) 

we get 

After integration with respect to 8 , the latter equation becomes 

G(z)=ii(.,+i~~y)~z+i~~dz+cIB(I) (o=const) (1.W 

0 0 

It Pollowa from the relation (1.1 
are prescribed, then the function 0 #,i) 7 

) that I? the components of stresses 
Is determined to within a COngtaIIt. 

Consequently, by choosing o - 0 ln Equation (1.30) the function U(r,#) 
becomes fully determined by the state of stress. 

Thue, the solution of the first boundary value problem Is reduced to the 
determlnatlon of the solution Q(#,i) BatlBfyying Equations (1.21) or (1.n) 
together with boundary condition (1.30). After having solved this problem, 
the strees components can be found using (1.24). 

To solve the second boundary value problem we use the formulation in die- 
placements. On account of Formulas (1.X5) equation of equilibrium (1.12) 
can be written In terms of dlaplacement In the form 

(1.31) 
a 
aa X-I aZ [~(“+~)]+~(~a~)=P(z,~,, P (2, I) G - ++kT)--$(x+iY) 

Thla equation can be written in the form 

wm 1 9 v_ 

x-g------ x--la.2 

-i [$(z U)+P(rj)]d~}=O 
0 

It follows from the above” 

x a WJ) 1 a(pV) 1 ap 
x-_laa+x_1a;---*-- x-l az 

_!_!k u_ 
x-l a; 

(1.32) 
0 

wher_e q(r) le an arbitrary function holomorphlc In D . By ellmlnatlng 

dob%aui?l ” 
from Equation (1.32) and from its complex conjugate equation we 

2 ; L 

Pe(z, i) E s[ s x P(z,;)dk 
s 

F(-z. z) dr 
I 

dz 

0 0 0 

(1.33) 

(1-W 

where q(x) is again an arbitrary function, holomorphlc in D . 
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The solution of the second boundary value problem is Finally reduced to 
the solution of Equation (1.31) or equivalent to It (1.33) satlsfylng condl- 
Won U (s) == u (s) -I- iv (s), where 
displacement, given on C . 

U(8) and u(8) are components of elastic 

2. ~lortlon of oonfomal ampplng. Let us assume that the simply con- 
nected domain R. with boundary C In the plane t - x + ty 
by means of conformal map ing 

Is transFormed 

described by an Equation P 
i = IN(C) into the circle h with boundary r’, 

c f I 1 , In the plane f = 5 + tq where u1(0) = 0. 

Since W(C) Is holomorphlc In 4 , then 

Consequently (1.27) and (1.25) become 

where cp(C) and a(c) are arbitrary functions holomorphic in A and 

co (Z 5) E G lo (C), 0 (C)l, BjQ (6, 5, _= B, IO (5), 0 (C)f fi = 1, 2, 3, 4) (2.5) 

The boundary condition (1.30) after mappIng is 

Go {a) = H'(q) (2.6) 

where u = .$* denote the cWvilineas absclsea on the circle r and the 
function H*(Q) is uniquely defined in H(s) since there is one to one cor- 
respondence t = (U(T) between affixes t on the contour C and 1 on the 
contour r . 

Substitution of (2.1) into (1.33) and (1.34) results In 

(X3-i)W0(t;, 0+JJ”~Y5, C>=xqJ (5) 

c 

-g$VB-~- 

(2.7) 

(23) 

The Image of the boundary condition (1.35) Is 

u0 (a) = U0 (a) $ iv0 (a) 

where u”(u) and ue (a) are uniquely determined by M(S) and b(s) . 
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3. Xothod ot ruoorrrlvr ~pproxlnmtlonn . The boundary value problems for 
nonhomogeneous bodies will be solved by means of the method of successive 
epproximeitlons. Assuming that the first approximation corresponds to the 
homogeneous body subjected to the same condition of loading, the subsequent 
iterations introduce corrections due to the nonhomogeneity. The Solution of 
the first boundary value problem can be found from Equations (2.2) and (2.6) 
a8 follows: 

G” (5, r;, = 5 $,YL i) (3.1) 
T&=1 

(3.2) 

where functiona (oP (C) and $.(C) (n s 1) are holomorphlc in A and should 
be determined from Boundary conditions 

O(T) - - 
‘pl (7) % = o, (T) ~1’ P) + ‘#I(~) = He (7) - Foe 6, T) (3.4) 

rp,m f 
-- 

(n > 2) 
(3.5) 

As Is shown in Section 1, the elimination of an additive constant In the 
conditions (1.30),ln accordance with (2.6), permlts to express 
in terms of stress. However, since functions cp(C) and 1(C) are 

determined from (2.2) we can Impose an additional condition ([lo], 

cp (0) = 0, Im cp’ (0) = 0 
This implies that In the considered scheme of solution we can assume 

on (0) = 09 Imcp,’ (0) = 0 (n>, i) (3.6) 

A solution of the subsequent boundary value problems (3.4) and (3.5) can 
be achieved by means of methods known In the theory of elasticity for homo- 
geneous bodies, I.e. method of expandkg In power series, Integral methods, 
etc. 

An example concerning a solution of the first boundary value problem for 
a circle, based on the known Muskhellshvlll’s power series solution, will be 
given In Section 4. 

The conver ence of series (3.1) depends upon the conditions imposed on 
functions R of 7) &“(f, 5) u(C) and also upon the type of functions 
describing the nc&homogeneous’prope&s of the body. 

A solution of the second boundary value problem can be found from (2.7) 
and (2.8), according to 

(3.9) 
where the functions rp,, (C) and $.(c) (n z l), are holomorphlc in A , and 
are determined from the boundary conditions 

T 



It Is Been from (2, 
determined by p( 7, 

) that the functions Q(C) and t(C) are not uniquely 
T 1 . However, in the considered scheme of solution we 

can add the following condition 

‘Pn (0) = 0 (n > 1) (3.12) 

and then, both I$.(() and *.(C) become fully determIned by mean8 of U"(c,t). 

The boundary value problem (3.10) and (3.11) differs from the common elas- 
tic problems for homogeneous bodies by the presence of an Integral term. 
As~umlng a frequently tieed hypothesis ( ) that R I ko= const , relations 
(3.8) to (3.11) become 

(3.13) 

wP,w-- 
o('5) - - 
='P~'@)--+~ @)=J"un?ll(~, 7) 
6f (T) 

(3.16) 

and the solution of related boundary value problems (3.10) and (3.11) can be 
reached by means of methods used in the theory of elasticity for homogeneous 
bodies. 

for'~he%i%%'%!%~d by a circle 1x1 
We shall solve the flrat boundary value problem 

- R and subjected on the clrcum- 
ference to a uniform radial tensile load of intensity p (Pig.la). Apply- 
ing a conformal mapping 2 - RC that domain D transforms Into the domain 
A In the complex plane C 
lb). 

repr:sentlng a unit radius circle ICI - 1 , (Pig. 

Let z = re’“, Cm; p<‘(p = r/R). Introducl the polar components of 
stresses u,, Ug rO, .we obtain from (1.24 expression8 determlnlng Y 
these components corresponding to varloua stases of the iteration process 

T$) = $ Im ( 
aEn” de 

--zq-e ) 
(4.1) 

(J (nl=& 
I 

ac," -0 

F ag- Re (2&- .2@ 
)I 

- 

Fig. 1 

cr 
If the components of stress applied to the Contour are Q = pCoS0. 

nn = p sin@, then taking Into account that do = R&, we obtain from (1.30) 

H" (0) = ill\ (one + ib,,,) dtl = ipR 
e 

s 
eiedt3 = pR? 

0 0 

*) This hypothesis can be assumed as a first approximation for an arbitrary 
nonhomogeneous body since x depends solely upon the Poisson coefficient, 
which varies for all known materials within sufficiently narrow ranges. 
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/r, Consider the nonhomogeneity of the type 

where a and no are dlmennlonless parameters, 
whereas u,, ir of the same dlmanolon as p . 
The linea p - conet are then parallel to the 

Fig. 2 1 

axis, (Fig.2). 
2.3) 

Ram (1.19), (1.23) and 
we get 

J”G’(~,~j= \ R~[-2~G”+‘“,-:~~G’~~+~S God+< 
8 t 0 

Applying now the soheme ot solution presented ln Sbation 4 and also uelng 
the ?Iuehsllahvill*s aolutlon of the first boundary val 
tlon 54) we obtain expFassion8 ior the funatlon &*(CJ t” 

problem (1 lo], &a- 
) and aorrespond~ 

ooowonents of stress. !Fhe first three iterations of u,, a, and r,,, are 

a r (1) z I@ = p 9 7$’ = 0 

a (2) _ P (‘xg - 1) Qa PO%- i)a2 
? - 2(x6’+ 1) (1 -P% 68(4) = 2 (%+ *) (1 - 3P’h r$’ = 0 

,j w = Me-W 
r 24(Ho + i)a (1 - P”) W h - 1) (2 - P’) + 8 (xg + i) P cos 8 - CL (1 + p’) cos 291 

q)(3) = 
A%- W 
24 (16 + i)2 IZu 0% --i)(2--9pa+5p’)48(xo+1)(3--5p0)pcosBa 

+ a (1 - i2p2 + 15~‘) co8 201 

r,@(3) = 
P&o--i)@ 
24 txg + l)a (1 - P”) 18 &O + i) P sin 6 + a (I- 5~~) sin 201 

Table 1 resent0 relative values of a, and a6 at 0 I 0 for MD 1.8 
and a-0. B , corresponding to the first three stages of iteration, 60 that 
ln the Table 1 

a,(l) a,(l) + cp 
a -- 
rl- p ’ a r!2 = P ’ 

In this case M ahangea fr9m 
the ehear dress I$= 0, R >, I, 
metrical with respect to g-axis. 

G,(l) $ a,(‘) + a,(*) (a91 * %2* be3 
d I.3 

=P- 
P aMlogloally) > 

0,2%0 to 4.95 ~b, (Fig.2). For 8 - 0 
alnoe the nonhomogenelty and load are sym- 

Table 1. 

I 

Stress 1 0.0 ) 0.2 

6 rl l.OQOOO 1.00000 

=r2 1.09143 1 .O3777 

5-3 1.09526 1.10063 

%l 1.OQOoo 1.00000 

%2 i. 09143 1.08040 

=e3 1.09874 1.11280 

0.1 

l.OOOOO 

1.07680 

I. 09578 

1.0#0 

i .04754 

i,c9OE8 

T - 
0 

0.6 

1.oaQoo 

i .0585i 

1.07863 

1.0ooOo 

0.99269 

1.02310 

0.8 

i~.ooooO 

1.03291 

1 .Wi28 

1. cccco 

0.915&O 

0.9c253 

-i - 1.0 

l.ooooO 

i.ooooO 

i.ooooo 
1.ooocQ 

O+M714 

0.72%2 
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Results presented In Table 1 show that the presence of nonhomogeneity 
alters the state of stress both qualitatively and quantitatively. In the 
considered case the maximum value of radial and circumferential stresses 0,. 
and U. changes respectively by + 10s and - 28%. Also, there 
the shear stress T,.,, , although the loading Is axisyn8netric; 
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